Мультимедиа: геометрия, графика, кино, звук


Пример 23



Пример 23



  и отношение

dn/dn+1 также имеет предел, равный некоторому числу а, причем а = 2,5029078...

Что будет, если вместо функции хn+1 = rхn(1—хn) взять любую другую симметричную функцию, которая имеет на отрезке [О, 1] один максимум и около вершины близка к квадратичной параболе. Пусть в ней также происходит бесконечная последовательность бифуркаций удвоения при изменении некоторого параметра. Оказалось, что в любой такой модели числа а и 5S будут одними и теми же! Более того, независимо от вида функции предел lim(-a)nf2n[(x-0,5)/(-a)n,rn] существует и будет одной и той же универсальной функцией, обозначаемой часто через g0(х).

Эти удивительные закономерности были обнаружены и поняты американским математиком М. Фейгенбаумом в 1978 году. В силу универсальности чисел а и 5 и функции g0(x), a также других функций такого типа эту теорию называют теорией универсальности.

Что же означают эти результаты?

В природе можно выделить два совершенно различных на первый взгляд типа явлений. Одни — регулярные и упорядоченные. Это большинство процессов, используемых в технике и технологии, процессы, в которых возникают структуры. Как правило, ход таких процессов можно предсказывать, зная управляющие ими законы.

Другие процессы — случайные, хаотические. К ним относится турбулентное движение жидкости, шумы в различных электронных системах и т.д. Они требуют другого, статистического описания, которое позволяет получить некоторые усредненные характеристики процессов. Такие явления также очень важны, но используются гораздо реже из-за их сложности и недостаточной изученности. В одних случаях турбулентное движение жидкости позволяет транспортировать уголь, руду и многое другое по трубам. В других — с турбулентными вихрями приходится бороться. Хорошо зная законы турбулентного движения, можно было бы строить более быстрые и экономичные суда и самолеты.

Теория Фейгенбаума приводит к парадоксальному выводу: между хаосом и порядком есть глубокая внутренняя связь. Непериодический, случайный процесс возникает как предел все более сложных структур (циклов S2n). Хаос возникает как сверхсложная организация (цикл S2 )! Этот вывод является очень общим: он может относиться к моделям экологии, гидродинамике — к любым системам, где есть последовательность бифуркаций удвоения периода.

Возможно, вы подумали, что сложность взаимоотношений порядка и хаоса, имеющая место в данной модели, связана с участием вещественных чисел. Тогда вспомните график функции Эйлера, график количества единиц в двоичной записи целых чисел. На этих графиках, где нет ничего, кроме целых чисел, также наблюдается сложная картина чередования хаоса и циклов.

Еще более сложная .картина может наблюдаться в многомерном (например, в двухмерном) случае. Если модель к тому еще и дискретная, то можно говорить о клеточных автоматах.










Начало  Назад  Вперед



Книжный магазин